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2 Exascale Computing Project 

Overview: Production-grade, open source, scalable 
runtime integrates into HPC PowerStack 
Problem: 

–  Power and energy are critical constraints for exascale  
–  Inefficient power management results in limited application performance, job 

throughput and system utilization, leading to added operational costs 
–  Existing approaches are ad-hoc research codes (Conductor, Adagio, RMAP, etc.) and 

have several scalability and portability limitations 
 

Solution: 
–  Production-grade, industry-supported, open-source, job-level runtime (GEOPM) 

suitable for integration with resource manager/software stack 
–  Algorithms to analyze critical path of applications, distribute power intelligently to 

hardware components, mitigate variation, support portability to upcoming architectures 
and task-based programming models 
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 Impact goals and impact metrics 

Impact Goal*	 Metric	
Widespread use of GEOPM across 
ECP-enabled applications.	

Number of ECP benchmarks, scientific applications, system software 
components, and processor architectures that have been integrated with 
GEOPM.	

Demonstrate safe execution under 
either power or energy constraints.	

Using multiple benchmarks, proxy applications and applications, sample 
instantaneous power and measure total energy, and demonstrate system-
specified bounds are not exceeded.	

Optimize runtime in power and 
energy constrained environments, 
with an expected average 
improvement of 20%*.	

Show percentage runtime performance improvement across a selected 
suite of multiple benchmarks, proxy applications and codes while 
maintaining power at or under the system-specified bound. Comparison 
will be made with naïve uniform static power allocation and/or with full-
energy execution. (*Exact improvements will depend on underlying 
processor architecture and application characteristics).  



4 Exascale Computing Project 

 Power Steering can accomplish more science per dollar 

•  Power Steering can improve Time To Solution 
(TTS) by up to 30% on ECP applications 

•  30% improvement in TTS translates to 30% of 
power savings 

•  Example: 
•  If we assume a 30 MW system that is 

operational for 5 years, this is equivalent 
to 30 MW * 30% * 5, or 45 MW-Years 

•  Assuming a power cost of $1M per MW-
year, that is $45M for additional science 

Fig. 3: Runtime Improvements Obtained with GEOPM Power Balancing Plugin
on a 12-Node Knights Landing Cluster. 5 Runs Averaged for Each Bar.
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New power model with configuration space exploration 

2x  
speedup •  Select application 

configurations 
intelligently at runtime 
 

•  Address manufacturing 
variation with a non-
linear model  
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https://github.com/amarathe84/geopm/tree/dev/ecp  
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Port GEOPM to non-Intel architecture (IBM Power9) 

•  Purchased an IBM Power9 Witherspoon node for the 
Power Lab at LLNL 
o  Allows for isolated root access, low level firmware 

development, disabling of features such as secure boot 
o  Replica of a Sierra node, which allows developed software 

to be easily transferrable  

o  Developed DVFS-based model for GEOPM, explored 
OCC (on-chip controller) options 
 

•  Identified a bug in IBM OPAL firmware  
o  Did not account for scenarios where GPUs were not used  
o  Did not allow for setting of correct power caps 
o  Did not expose knobs for TurboBoost/UltraScale 

https://github.com/amarathe84/geopm/tree/ibm-port 
https://github.com/open-power/skiboot/issues/195 
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Evaluate Legion applications, design power management 
for task-based models 

Experiments with the 
Legion DAXPY benchmark 
running without a power 
cap, with a 170W power 
cap with GEOPM, and with 
a 140W cap with RAPL. 
Execution time is shown 
on y-axis for 5 
experiments. 

Package-level power 
information per time-
step for a 256-task 
Legion application 
when integrated with 
GEOPM. 

•  Successful integration of Legion and GEOPM, not implemented as a plugin due to MPI-related restrictions in 
current version of GEOPM  

•  Created a new DAXPY benchmark for evaluation 

https://github.com/scott-walker-llnl/legion-geo-interop 
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Scientific workflows need fine-grained power management 

•  Load imbalance cannot be addressed directly as memory may be shared between simulation, 
analysis and visualization components making data movement challenging 

•  Parts of large-scale workflows may not utilize GPUs or certain cores 
•  Critical path can be sped up by directing power to relevant tasks 
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(a) By implementing an adaptive multiscale model, the Cancer
Moonshot Pilot2 project directly couples molecular detail to
a cellular-scale continuum simulation. Machine learning directs
instigation and investigation of coarse-grained (CG) particle
simulations from only the continuum (DDFT) simulation patches
with novel features, allowing for intelligently sampling of the
simulation space far more efficiently, resulting in a scope
of exploration that is not achievable using only brute force
calculations. Furthermore, in situ analysis of the CG simulations
and feedback allows for the DDFT simulation parameters to evolve
in real time, incorporating the vast sampling carried out at the
particle level.

(b) Multiscale code framework. The WorkFlow (WF) Manager
connects two scales: DDFT and CG. Frames resulting from the
DDFT simulation are decomposed into patches, and the WF
Manager feeds them to the machine learning (ML) infrastructure,
which maintains a priority queue of candidate patches. When new
resources become available, the WF Manager picks top candidates
and uses the Flux resource manager to start new CG simulations.
Data transfer and messaging is handled through the DataBroker
(DBR), which implements a fast, system-wide key-value store.
Thickness of black arrows represents the bandwidth of data flow
to and from the DBR.

Fig. 1: Multiscale Simulation for RAS Initiation of Cancer

wall time to continuously accumulate data of interest. When
run on 3,500 nodes of sierra, the workload needed to run a
single 1,000 node continuum model, a single node machine
learning and workflow management system, the data broker,
and GROMACS simulations on CPUs of all 3,500 nodes.
While those were running, four separate ddcMD simulations
were run on each node using the GPUs, running at least 5
logically separate items on each node. In order for this to
work well, the job execution system needed to manage at least
7,500 simultaneous jobs and continually re-schedule work as
microscale jobs completed.

Overall, this workflow clearly exemplifies the many
(co-)scheduling and execution challenges faced by emerging
workflows. They include co-scheduling of coupled simulations
at different scales (i.e., continuum models-based simulations
with several thousand MD simulations, coordination between
CPU and GPU runs), the use of a machine learning module to
schedule (or de-schedule) and execute simulations dynamically
at a high rate, and the use of data store to coordinate the
data flow between different tasks. We will further characterize
the key scheduling and execution challenges such as the ones
shown in the Cancer Moonshot Pilot2 workflow in the next
section.

III. CHALLENGES IN WORKFLOW SCHEDULING

This section characterizes the workflow scheduling and
execution challenges based on our analysis on some of the
emerging workflow management practices at LLNL. Our
analysis is based on our direct interactions with three distinct

workflow management software development teams at LLNL,
namely the Cancer Moonshot Pilot2 workflow, Uncertainty
Quantification Pipeline (UQP) [16], and the Merlin workflow
that supports extreme-scale machine learning, as well as
interviews with developers of other workflow management
software such as PSUADE UQ framework [17] and end
users who have created ad hoc schedulers for their workflow.
While each of these workflows often address entirely different
domains of science, they exhibit common scheduling issues.
As briefly highlighted in Section I, they are referred to as
throughput, co-scheduling, job coordination/communication,
and portability challenges.

A. Throughput Challenge
Many workflows feature large ensembles of small,

short-running jobs, which can create thousands or even
millions of jobs that need to be rapidly ingested and scheduled.
For the Cancer Moonshot Pilot2 example presented in the
previous section, several thousand MD simulations need
to be run successfully with a quick turnaround time to
facilitate the refinement of parameters in the continuum model
and produce microscale results. In the case of the UQP,
building a surrogate model can require tens to hundreds of
thousands of simulation executions to adequately sample the
simulation’s input parameter space. Such ensemble workloads
are becoming a norm rather than an exception on high-end
HPC systems.

Traditional RJMS in most cloud and HPC centers today
are based on centralized designs. Cloud schedulers such as

RAS Cancer Simulation Workflow Isosurfacing and Visualizations 



9 Exascale Computing Project 

Explore interfaces for GEOPM and HPC batch schedulers 
for ECP Argo 

•  Implement and test power-aware SLURM at 
scale  

•  Explore interfaces for fine-grained 
management and identify range of 
improvement  

•  Five job mixes, 5 levels of overprovisioning 
to understand the impact of degree of 
overprovisioning 

•  IvyBridge cluster HA8K in Japan, 965 nodes 
•  Sweet spot around 680 nodes shows that 

hardware overprovisioning with GRM can 
give better utilization and up to 40% higher 
throughput 
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Summary and Next Steps 

 
•  We are collaborating with scientific workflow teams, engaging users and evaluating more ECP 

applications 
•  We are supporting multiple architectures and helping with community outreach  

through the HPC PowerStack charter 

HPC PowerStack 
 https://

powerstack.lrr.in.tum.de/ 
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Thanks! 


